perm filename V242.INX[TEX,DEK]1 blob
sn#506775 filedate 1980-05-03 generic text, type T, neo UTF8
Floating point arithmetic→198f
Avogadro's→198
Planck's→198
excess in floating point exponents→198
floating binary→198
floating decimal→198
Exponent part of floating point number→198f
Fraction part of floating point number→198f
characteristic→199
mantissa→199
{\:tMIX}\ floating point attachment→199
normalized→199f
Floating point addition→200f
floating point subtraction→200f
fraction overflow→201
rounding→201
rounding overflow→201
exponent overflow→201
exponent underflow→201
\hbox {\:tACC}: Floating point accumulator→202f
\hbox {\:tOFLO}→202
JXO→203
Floating point multiplication→204f
Floating point division→204f
rounding overflow→204
fix-to-float→205
Conversion of representations→205
debugging→205f
exponent underflow→206f
exponent overflow→206
programming languages→206
gradual underflow→206
Electrologica X8→206
relative error→206
accuracy→206
rounding→206
Kahan→206
Palmer→206
rounding overflow→207
Rounding→207
{\:tMIX}→208f
floating point attachment→208
\hbox {\:tFADD},→208f
\hbox {\:tFSUB},→208f
\hbox {\:tFMUL},→208f
\hbox {\:tFDIV},→208f
\hbox {\:tFLOT},→208f
\hbox {\:tFCMP}→208f
\hbox {\:tFIX}→208f
rounding overflow→208
sexagesimal→209
Babylonian mathematicians→209
Neugebauer→209
Apollonius→209
Pappus,→209
Oughtred→209
slide rule→209
Torres→209
Zuse→209
Stibitz→209
Infinity, representation of→209
Model V→209
Mark II→209
Randell,→209
floating binary arithmetic→210f
von Neumann→210
EDVAC→210
interpretive systems→210
Wheeler→210
Wilkes,→210
Gill→210
floating decimal→210
Stark→210
MacMillan→210
McCracken,→210
Carr→210
Wadey,→210
Knuth,→210
Kesner,→210
Brooks→210
Iverson,→210
Campbell,→210
Buchholz→210
Coonen→210
Kahan→210
Stone→210
Planck's→211
Zuse,→211
floating point addition→211f
\hbox {\:TFADD}→211
balanced ternary notation→211
Kahan→211
rounding overflow→211
interval arithmetic→212
conversion of representations→212
float-to-fix conversion→212
floating point mod→212
Smith→212
hardware, algorithms suitable for (exercise 15)→212
Cocke→212
two's complement→212
floating point numbers, two's complement→212
normalizing→212
JOHNSON→213
JEFFERSON→213
Accuracy of Floating Point Arithmetic→213f
significant figures→213
relative error→213
La Touche→214
exponent underflow→216
exponent overflow→216
Cauchy's ineqality (is on this page)→216
standard deviation→216
mean→216
Welford,→216
relative error→216f
floating point comparison→218f
Neighborhood of a floating point number→218
floating point addition→219f
floating point subtraction→219f
tail of a floating point number→220
rounding→221f
drift→222
round to even→222
round to odd→222
truncation→222
Unnormalized floating point arithmetic→223f
normalizing→223
Avogadro's→223
Planck's→223
Ashenhurst→225f
Metropolis→225f
Rall→225
Interval arithmetic→225f
range arithmetic→225
Avogadro's→225
Planck's→225
overflow→226
underflow→226
Tannery→226
round to even→226
Scarborough→226
Bauer→226f
Samelson,→226f
Carr→226f
Fischer,→226
Wilkinson,→226
Kahan,→226
Brent,→226
van Wijngaarden→227
M\o ller→227
Dekker→227
Linnainmaa→227
Kahan→227
Reiser→227
Knuth,→227
MANIAC III→227
Gray→227
Harrison,→227
Wadey,→227
Gibb,→227
Chartres,→227
Moore→227
floating point multiplication→227f
exponent overflow→227
floating point reciprocal→228f
floating point division→228f
floating point comparison→228f
Kahan→228
floating point mod→228
unnormalized→229f
standard deviation→229
floating point summation→229
\hbox {\:TFCMP}→229
hardware, algorithms suitable for (exercise 17)→229
Kahan→229
Linnainmaa→229
Dekker→229
drift→229f
intervals→230
minus zero→230
infinity, representation of→230
floating point subtraction→230
cancellation error→230
Diamond→230
Kahan→230
Double-Precision Calculations→230f
fraction parts→231
exponent part→231
cosine→231
floating point trigonometric subroutines→231
double-precision addition→232f
double-precision subtraction→232f
carries→232f
signed-magnitude→232
Normalization→233
minus zero→234
double-precision multiplication→234f
Double-precision floating division→235f
double-precision addition→235
WM1→236
triple-precision floating point→237
Ikebe,→237
overflow→237
conversion of representations→237
accuracy→237
Dekker→237
quadruple-precision→237
Distribution of Floating Point Numbers→238f
floating point addition→238f
floating point subtraction→238f
Sweeney→238
normalization→239
floating decimal→239
Newcomb→239
Benford,→240
leading-digit law→240f
logarithmic law of leading digits→240f
slide rule→240
Hamming→240
Raimi,→242
probability→242f
Pr→242
Franel,→243
Riemann-integrable→244
generating functions→246f
Flehinger→247
Raimi,→247
Konheim,→247
floating binary→248
floating hexadecimal→248
Diaconis→248
Hamming→248
floating point multiplication→248f
fraction overflow→249
Diaconis→249
Duncan→249
Pr→249
harmonic probability→249